We provide a brief, and inevitably incomplete overview of the use of Machine Learning (ML) and other AI methods in astronomy, astrophysics, and cosmology. Astronomy entered the big data era with the first digital sky surveys in the early 1990s and the resulting Terascale data sets, which required automating of many data processing and analysis tasks, for example the star-galaxy separation, with billions of feature vectors in hundreds of dimensions. The exponential data growth continued, with the rise of synoptic sky surveys and the Time Domain Astronomy, with the resulting Petascale data streams and the need for a real-time processing, classification, and decision making. A broad variety of classification and clustering methods have been applied for these tasks, and this remains a very active area of research. Over the past decade we have seen an exponential growth of the astronomical literature involving a variety of ML/AI applications of an ever increasing complexity and sophistication. ML and AI are now a standard part of the astronomical toolkit. As the data complexity continues to increase, we anticipate further advances leading towards a collaborative human-AI discovery.
translated by 谷歌翻译
Recent advances in deep learning have enabled us to address the curse of dimensionality (COD) by solving problems in higher dimensions. A subset of such approaches of addressing the COD has led us to solving high-dimensional PDEs. This has resulted in opening doors to solving a variety of real-world problems ranging from mathematical finance to stochastic control for industrial applications. Although feasible, these deep learning methods are still constrained by training time and memory. Tackling these shortcomings, Tensor Neural Networks (TNN) demonstrate that they can provide significant parameter savings while attaining the same accuracy as compared to the classical Dense Neural Network (DNN). In addition, we also show how TNN can be trained faster than DNN for the same accuracy. Besides TNN, we also introduce Tensor Network Initializer (TNN Init), a weight initialization scheme that leads to faster convergence with smaller variance for an equivalent parameter count as compared to a DNN. We benchmark TNN and TNN Init by applying them to solve the parabolic PDE associated with the Heston model, which is widely used in financial pricing theory.
translated by 谷歌翻译
Three main points: 1. Data Science (DS) will be increasingly important to heliophysics; 2. Methods of heliophysics science discovery will continually evolve, requiring the use of learning technologies [e.g., machine learning (ML)] that are applied rigorously and that are capable of supporting discovery; and 3. To grow with the pace of data, technology, and workforce changes, heliophysics requires a new approach to the representation of knowledge.
translated by 谷歌翻译
In the Earth's magnetosphere, there are fewer than a dozen dedicated probes beyond low-Earth orbit making in-situ observations at any given time. As a result, we poorly understand its global structure and evolution, the mechanisms of its main activity processes, magnetic storms, and substorms. New Artificial Intelligence (AI) methods, including machine learning, data mining, and data assimilation, as well as new AI-enabled missions will need to be developed to meet this Sparse Data challenge.
translated by 谷歌翻译
We describe a Physics-Informed Neural Network (PINN) that simulates the flow induced by the astronomical tide in a synthetic port channel, with dimensions based on the Santos - S\~ao Vicente - Bertioga Estuarine System. PINN models aim to combine the knowledge of physical systems and data-driven machine learning models. This is done by training a neural network to minimize the residuals of the governing equations in sample points. In this work, our flow is governed by the Navier-Stokes equations with some approximations. There are two main novelties in this paper. First, we design our model to assume that the flow is periodic in time, which is not feasible in conventional simulation methods. Second, we evaluate the benefit of resampling the function evaluation points during training, which has a near zero computational cost and has been verified to improve the final model, especially for small batch sizes. Finally, we discuss some limitations of the approximations used in the Navier-Stokes equations regarding the modeling of turbulence and how it interacts with PINNs.
translated by 谷歌翻译
Video segmentation consists of a frame-by-frame selection process of meaningful areas related to foreground moving objects. Some applications include traffic monitoring, human tracking, action recognition, efficient video surveillance, and anomaly detection. In these applications, it is not rare to face challenges such as abrupt changes in weather conditions, illumination issues, shadows, subtle dynamic background motions, and also camouflage effects. In this work, we address such shortcomings by proposing a novel deep learning video segmentation approach that incorporates residual information into the foreground detection learning process. The main goal is to provide a method capable of generating an accurate foreground detection given a grayscale video. Experiments conducted on the Change Detection 2014 and on the private dataset PetrobrasROUTES from Petrobras support the effectiveness of the proposed approach concerning some state-of-the-art video segmentation techniques, with overall F-measures of $\mathbf{0.9535}$ and $\mathbf{0.9636}$ in the Change Detection 2014 and PetrobrasROUTES datasets, respectively. Such a result places the proposed technique amongst the top 3 state-of-the-art video segmentation methods, besides comprising approximately seven times less parameters than its top one counterpart.
translated by 谷歌翻译
Scene change detection is an image processing problem related to partitioning pixels of a digital image into foreground and background regions. Mostly, visual knowledge-based computer intelligent systems, like traffic monitoring, video surveillance, and anomaly detection, need to use change detection techniques. Amongst the most prominent detection methods, there are the learning-based ones, which besides sharing similar training and testing protocols, differ from each other in terms of their architecture design strategies. Such architecture design directly impacts on the quality of the detection results, and also in the device resources capacity, like memory. In this work, we propose a novel Multiscale Cascade Residual Convolutional Neural Network that integrates multiscale processing strategy through a Residual Processing Module, with a Segmentation Convolutional Neural Network. Experiments conducted on two different datasets support the effectiveness of the proposed approach, achieving average overall $\boldsymbol{F\text{-}measure}$ results of $\boldsymbol{0.9622}$ and $\boldsymbol{0.9664}$ over Change Detection 2014 and PetrobrasROUTES datasets respectively, besides comprising approximately eight times fewer parameters. Such obtained results place the proposed technique amongst the top four state-of-the-art scene change detection methods.
translated by 谷歌翻译
Research on remote sensing image classification significantly impacts essential human routine tasks such as urban planning and agriculture. Nowadays, the rapid advance in technology and the availability of many high-quality remote sensing images create a demand for reliable automation methods. The current paper proposes two novel deep learning-based architectures for image classification purposes, i.e., the Discriminant Deep Image Prior Network and the Discriminant Deep Image Prior Network+, which combine Deep Image Prior and Triplet Networks learning strategies. Experiments conducted over three well-known public remote sensing image datasets achieved state-of-the-art results, evidencing the effectiveness of using deep image priors for remote sensing image classification.
translated by 谷歌翻译
Early recognition of clinical deterioration (CD) has vital importance in patients' survival from exacerbation or death. Electronic health records (EHRs) data have been widely employed in Early Warning Scores (EWS) to measure CD risk in hospitalized patients. Recently, EHRs data have been utilized in Machine Learning (ML) models to predict mortality and CD. The ML models have shown superior performance in CD prediction compared to EWS. Since EHRs data are structured and tabular, conventional ML models are generally applied to them, and less effort is put into evaluating the artificial neural network's performance on EHRs data. Thus, in this article, an extremely boosted neural network (XBNet) is used to predict CD, and its performance is compared to eXtreme Gradient Boosting (XGBoost) and random forest (RF) models. For this purpose, 103,105 samples from thirteen Brazilian hospitals are used to generate the models. Moreover, the principal component analysis (PCA) is employed to verify whether it can improve the adopted models' performance. The performance of ML models and Modified Early Warning Score (MEWS), an EWS candidate, are evaluated in CD prediction regarding the accuracy, precision, recall, F1-score, and geometric mean (G-mean) metrics in a 10-fold cross-validation approach. According to the experiments, the XGBoost model obtained the best results in predicting CD among Brazilian hospitals' data.
translated by 谷歌翻译
Online personalized recommendation services are generally hosted in the cloud where users query the cloud-based model to receive recommended input such as merchandise of interest or news feed. State-of-the-art recommendation models rely on sparse and dense features to represent users' profile information and the items they interact with. Although sparse features account for 99% of the total model size, there was not enough attention paid to the potential information leakage through sparse features. These sparse features are employed to track users' behavior, e.g., their click history, object interactions, etc., potentially carrying each user's private information. Sparse features are represented as learned embedding vectors that are stored in large tables, and personalized recommendation is performed by using a specific user's sparse feature to index through the tables. Even with recently-proposed methods that hides the computation happening in the cloud, an attacker in the cloud may be able to still track the access patterns to the embedding tables. This paper explores the private information that may be learned by tracking a recommendation model's sparse feature access patterns. We first characterize the types of attacks that can be carried out on sparse features in recommendation models in an untrusted cloud, followed by a demonstration of how each of these attacks leads to extracting users' private information or tracking users by their behavior over time.
translated by 谷歌翻译